78 research outputs found

    Sturmian numeration systems and decompositions to palindromes

    Full text link
    We extend the classical Ostrowski numeration systems, closely related to Sturmian words, by allowing a wider range of coefficients, so that possible representations of a number nn better reflect the structure of the associated Sturmian word. In particular, this extended numeration system helps to catch occurrences of palindromes in a characteristic Sturmian word and thus to prove for Sturmian words the following conjecture stated in 2013 by Puzynina, Zamboni and the author: If a word is not periodic, then for every Q>0Q>0 it has a prefix which cannot be decomposed to a concatenation of at most QQ palindromes.Comment: Submitted to European Journal of Combinatoric

    Morphic words and equidistributed sequences

    Full text link
    The problem we consider is the following: Given an infinite word ww on an ordered alphabet, construct the sequence νw=(ν[n])n\nu_w=(\nu[n])_n, equidistributed on [0,1][0,1] and such that ν[m]<ν[n]\nu[m]<\nu[n] if and only if σm(w)<σn(w)\sigma^m(w)<\sigma^n(w), where σ\sigma is the shift operation, erasing the first symbol of ww. The sequence νw\nu_w exists and is unique for every word with well-defined positive uniform frequencies of every factor, or, in dynamical terms, for every element of a uniquely ergodic subshift. In this paper we describe the construction of νw\nu_w for the case when the subshift of ww is generated by a morphism of a special kind; then we overcome some technical difficulties to extend the result to all binary morphisms. The sequence νw\nu_w in this case is also constructed with a morphism. At last, we introduce a software tool which, given a binary morphism φ\varphi, computes the morphism on extended intervals and first elements of the equidistributed sequences associated with fixed points of φ\varphi

    The number of binary rotation words

    Get PDF
    We consider binary rotation words generated by partitions of the unit circle to two intervals and give a precise formula for the number of such words of length n. We also give the precise asymptotics for it, which happens to be O(n^4). The result continues the line initiated by the formula for the number of all Sturmian words obtained by Lipatov in 1982, then independently by Berenstein, Kanal, Lavine and Olson in 1987, Mignosi in 1991, and then with another technique by Berstel and Pocchiola in 1993.Comment: Submitted to RAIRO IT

    The number of valid factorizations of Fibonacci prefixes

    Get PDF
    We establish several recurrence relations and an explicit formula for V(n), the number of factorizations of the length-n prefix of the Fibonacci word into a (not necessarily strictly) decreasing sequence of standard Fibonacci words. In particular, we show that the sequence V(n) is the shuffle of the ceilings of two linear functions of n.Comment: Version accepted to Theoretical Computer Scienc

    Minimal complexity of equidistributed infinite permutations

    Full text link
    An infinite permutation is a linear ordering of the set of natural numbers. An infinite permutation can be defined by a sequence of real numbers where only the order of elements is taken into account. In the paper we investigate a new class of {\it equidistributed} infinite permutations, that is, infinite permutations which can be defined by equidistributed sequences. Similarly to infinite words, a complexity p(n)p(n) of an infinite permutation is defined as a function counting the number of its subpermutations of length nn. For infinite words, a classical result of Morse and Hedlund, 1938, states that if the complexity of an infinite word satisfies p(n)≤np(n) \leq n for some nn, then the word is ultimately periodic. Hence minimal complexity of aperiodic words is equal to n+1n+1, and words with such complexity are called Sturmian. For infinite permutations this does not hold: There exist aperiodic permutations with complexity functions growing arbitrarily slowly, and hence there are no permutations of minimal complexity. We show that, unlike for permutations in general, the minimal complexity of an equidistributed permutation α\alpha is pα(n)=np_{\alpha}(n)=n. The class of equidistributed permutations of minimal complexity coincides with the class of so-called Sturmian permutations, directly related to Sturmian words.Comment: An old (weaker) version of the paper was presented at DLT 2015. The current version is submitted to a journa
    • …
    corecore